A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations.
نویسندگان
چکیده
An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.
منابع مشابه
A GPU-Based Track-Repeating Algorithm for Dose Calculation for Photon Radiotherapy
An essential ingredient in radiotherapy is the calculation of the dose to be delivered to the patient. Analytical algorithms are commonly used for such a task, however their accuracy is not always satisfactory. Monte Carlo techniques provide higher accuracy, but they often require large computational times. Track-repeating algorithms, for example the Fast Dose Calculator, have shown promise for...
متن کاملA Track-repeating Algorithm for Fast Monte Carlo Dose Calculations of Proton Radiotherapy.
Monte Carlo codes are utilized for accurate dose calculations in proton radiation therapy research. While they are superior in accuracy to commonly used analytical dose calculations, they require significantly longer computation times. The aim of this work is to characterize a Monte Carlo track-repeating algorithm to increase computation speed without compromising dosimetric accuracy. The track...
متن کاملProton beam dosimetry by CR-39 track-etched detector
Background: High and intermediate energy protons are not able to form a track in a solid state nuclear track detector (SSNTD) directly. However, such tracks can be formed through secondary particles created during primary radiation nuclear reactions in a SSNTD. Materials and Methods: The protons with primary energies of 9.6 and 30 MeV available at the cyclotron accelerator with corresponding lo...
متن کاملAn Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method
Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 55 23 شماره
صفحات -
تاریخ انتشار 2010